

Beacon and Obstacle Navigation for an Autonomous

Rover

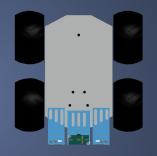
By: Richard Ortecho and Tim Helmer Collaborators: Cassandra Spath and Josh Beaty Mentors: Maurice Woods III and Tim O'Neill

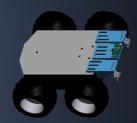
Equipped with his five senses, man explores the universe around him and calls the adventure Science.

(Edwin Powell Hubble)

Overview of Challenge

- Navigate an arena
 - Moving around walls
 - Moving around holes
 - End point is beacon


- Requirements
 - Under 4 kg
 - \$500 budget
 - Autonomous

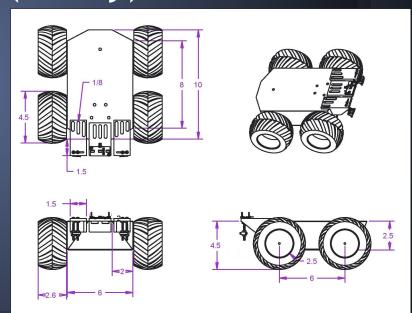


COLORADO SPACE GRANT CONSORTIUM

About our project:

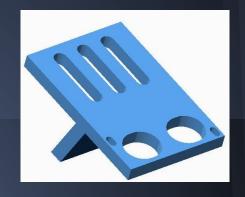
- Had to build a robot
 - Mechanics
 - Documentations
 - Software

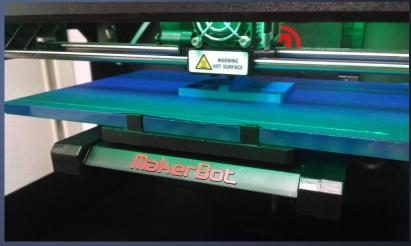
- Used to Navigate
 - A chassis
 - And sensors



Chassis

From LAZARUS PROJECT (Sheily)


- Built for future projects
- Modifications had to be made



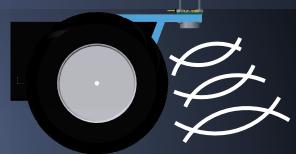
Construction

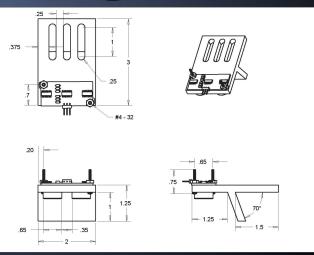
- Modifying the chassis
 - Holes
 - Wires

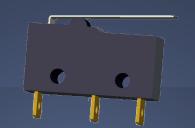
Printing the mounts

Electronics

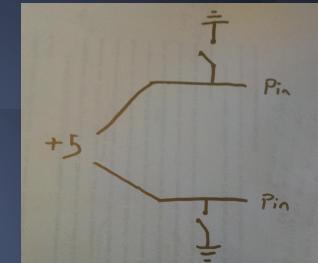
- Had to plan out everything
 - Motor Controller
 - Soldering
- Digital input and output
- Arduino Version of C++

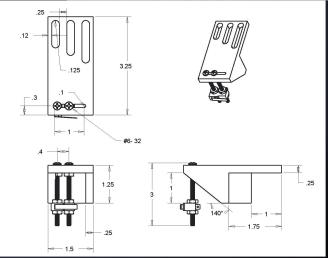



Ultrasonic Sensor


Parallax Ping Sensor

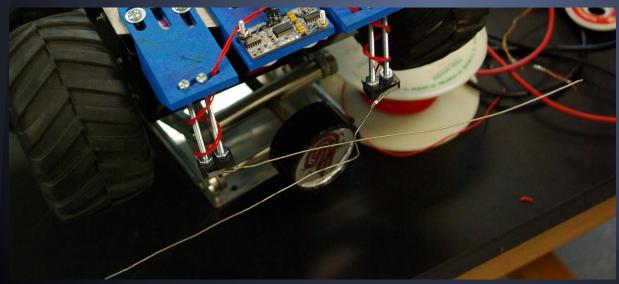
- Uses 40 kHz waves
 Humans hear up to 20 kHz
- Used to measure height
 - No turtling
 - No falling
 - High centering


Limit Switches



Makes a circuit

- Used as stop
 - Digital
 - Mechanical


Two angled mounts on front

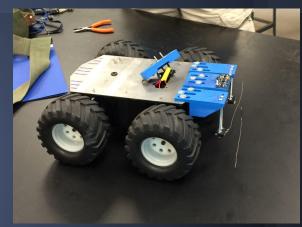
Logic Behind the Bump Sensors


Left hit = Right Turn Right hit = Left Turn

Results

- Currently running
- Some technical issues
 - Working to get fixed

- Only bump sensors are operational
 - Working to integrate all aspects

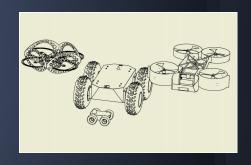


http://youtu.be/PXfdWKdTvhk

Demo of Robot (Live)

Conclusion

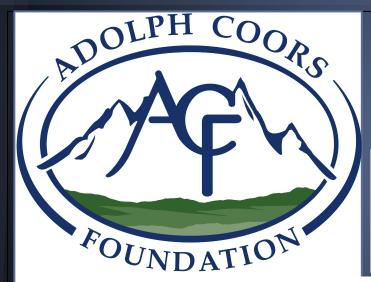
 Helped the robotics platform at UNC by building off of the LAZARUS Project


- Applications
 - Space Exploration
 - Demolished building Rescue

References

Floreano, D. & Nolfi, S.(2000). Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. Cambridge, Mass: MIT Press.

Sheily, R. The Lazarus Project: Developing a robust framework for future robotics research. Greeley, Colorado: UNC. (Sheily)



Volpe, R. Rover Functional Autonomy Development for the Mars Mobile Science Laboratory. Retrieved from https://www-robotics.jpl.nasa.gov/publications/Richard_Volpe/aerospace03.pdf

Acknowledgements

Brian Kanaga FSI Alumni Class Of 1984

Xcel EnergysM

KINDER MORGAN FOUNDATION